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16.3.1 Pitching-Moment Equation and Trim Calculation 
 

 
For conceptual design studies, sizing the horizontal stabilizer based on similar horizontal 
tail volume coefficients, as described in Raymer Section 6.5, may be sufficient.  Often in 
conceptual design and always in preliminary design the horizontal stabilizer is sized 
based on analysis of the configuration.  
 
The horizontal stabilizer is sized based on at least four requirements 
1. Static Margin with the c.g. at the rearmost location. 
2. Control in pitch with full flaps at landing approach speed with the c.g. at the 

forwardmost location. 
3. Takeoff rotation with the c.g. at the forwardmost location. 
4. Maximum travel of the center of gravity. 
 
 

 
 

Figure 16.3.1 Notch Chart c.g. Travel Constraints 
 

 
The chart illustrated above is called a notch chart at Lockheed and a scissors plot at 
Douglas.  This chart is a somewhat simplified version, and does not show the constraint 
line for takeoff rotation.  This constraint is similar to that for landing flare, and it is 
calculated by determining the pitching moment required to rotate the airplane about the 
main landing gear just prior to liftoff, with flaps in the takeoff flap setting.  The objective 
is to minimize the horizontal tail area, Sh by matching the fore and aft c.g. travel limits to 
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the stability and control requirements, i.e., by fitting the c.g. travel limits as low as 
possible into the notch.  A typical value of c.g. travel for commercial airplanes is 20% 
MAC.  This matching is done by moving the fuselage forward or aft relative to the wing.  
Moving the fuselage forward or aft moves the c.g. travel limits forward or aft by a lesser 
distance, but also affects the stability and control constraint lines.  Although somewhat 
laborious, the analysis can easily be done using a spreadsheet such as the Excel 
spreadsheet ‘Notch’ which may be found on the ADAC website under Support > Sample 
Spreadsheets. 
 

 
 

Fig. 16.3.2  Notch Chart c.g. Travel Constraints with Canard 
 
For a canard configuration the terms in Eq. 16.3.5 must be rearranged, and the line 
representing the change in Sh/Sw with c.g. location rotated forward, as illustrated in Fig. 
16.3.2. 
 
The ability to calculate the constraint lines requires that the geometry of the airplane must 
be reasonably well defined, which is why this determination is usually performed at the 
preliminary rather than conceptual design stage.  The method is described in detail in 
Torenbeek, Section 9.5.2.  Note that the method described in this reference makes 
allowance for the effect of the change in the weight of the horizontal stabilizer on the 
center of gravity.  This effect is omitted in the spreadsheet referenced above and the 
description of the procedure described below.  Torenbeek also points out that this 
analysis is somewhat of a simplification of the horizontal stabilizer sizing process, and a 
complete analysis involves other factors, such as stick forces and dynamic stability. 
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As Raymer states, the origin is at an arbitrary location, but for these stability and control 
analyses, the X origin can be conveniently located at the leading edge of the mean 
aerodynamic chord (LEMAC).  The MAC is shown in Fig. 16.3.1. 
 
In this analysis, only the landing approach condition is considered.  The procedure for 
analyzing the takeoff condition is described briefly by Raymer in subsection 16.3.12 
Takeoff Rotation on page 625. 
 
 
As illustrated in Fig. 16.3.1 above, the horizontal stabilizer may be sized by the ability to 
trim the airplane in landing approach (with full flaps) with forward c.g. condition.  This 

constraint line may be derived from Raymer Eq. (16.7) by expressing  
S h

S w

ffffffff in terms of  
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cg  plus the other variables.  On landing approach, engine thrust is at idle and can 
therefore be neglected, as can the inlet sideforce term.  The critical condition is at the end 
of the final approach when in ground effect.  
 
The equation is therefore of the form: 
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where 
 
 CL       = wing lift coefficient, derived from knowledge of wing area, airplane weight, 

and  approach speed 
 X
ffffff

cg   = non-dimensional location of the airplane center of gravity, which is a variable in 
this analysis 

 X
ffffff

acw   = non-dimensional location of the wing/body/nacelles aerodynamic center, which 
is usually at 25% of the MAC 

  Cmwf
  = wing pitching moment due to flaps, from Eq. (16.20) 

  f       = flap deflection in radians.  A maximum of 500 for double- or triple-slotted flaps 

is suggested 
 C m w

    = wing pitching moment, from Eq. (16.19)  
 Cm fus

   = fuselage pitching moment, derived from Eq. (16.25) 

 h   = ratio of dynamic pressure in tail region to free stream dynamic pressure, which 
(following Raymer’s suggestion) can be assumed to be 0.9 

 CLh
  = horizontal stabilizer lift coefficient, from Eq. (16.32) 

 X
ffffff

ach   = non-dimensional location of horizontal stabilizer aerodynamic center, which can 
be assumed to be at 25% of the horizontal stabilizer MAC. 

 
When Sh/Sw = 0 then 
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From Eq. (16.3.2) it can be seen that the Xcg value at the intersection of the landing flare 
constraint with the x-axis is proportional to the pitching moments of the flaps, wing, and 
fuselage.  As the flap angle increases, the line moves to the right. 
 
Unfortunately, derivation of some the terms listed above is not straightforward.  The 
wing pitching moment due to flaps, defined in Eq. (16.20), is 
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where 
 

 
CL

 f

ffffffffffff  = change in wing lift coefficient due to flap deflection, from Eq. (16.17) 

 X
ffffff

cp   = non-dimensional location of center of pressure for lift increment due to flaps, 
which can be derived from Fig. 16.19. 

 
Note that in Fig. 16.19,  c.  is the MAC of the extended chord of the wing due to Fowler 
action (e.g., see Fig. 12.17), so the value of xcp calculated from Fig 16.9 must be non-
dimensionalized by the MAC, and not by c. . 
 
The change in wing lift coefficient due to flap deflection is given in Eq. (16.17) as 
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where 
 
Kf = empirical lift increment correction factor for plain flaps, from Fig. 16.7.  For 

lack of better information, this will have to be used for slotted and Fowler flaps 
also 

 
C l

 f

fffffffffff  = theoretical wing section lift increment for plain flaps, from Fig. 16.6   

S flapped

S ref

fffffffffffffffffffff= ratio of wing flapped area to reference area (neglecting flap Fowler action) 

 H A L A   = flap hinge line sweep, in radians. 
 
Figure 16.6 applies only to plain flaps, and underestimates the lift increment due to 
slotted flaps.  Torenbeek Fig. 7-24 compares the increase in section lift coefficient for 
different flap configurations including a plain flap and a double-slotted Fowler flap.  
From this figure it can be estimated that for double-slotted Fowler flaps, the wing section 
lift increment from Raymer Fig 16.6 should be factored by 1.7. 
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The fuselage pitching moment (Cm fuse
) can be derived from Eq. (16.25).  If the location of 

the wing on the fuselage is to be adjusted in order to fit the c.g. travel into the bottom of 
the notch, the curve may be approximated by 
 

 K f  0.00227 e
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where 
 
Lw = distance from nose to wing root quarter chord 
 
Lf = fuselage length. 
 
For normal fuselage arrangements, this method will suffice, but for abnormal fuselage 
shapes, a more detailed method, such as may be found in Ref. 16.3.1.  Calculating  Cm fuse

  

requires multiplying  Cm fuselage
  by α.  This can be derived from Eq. (16.13) where αOL is 

the sum of αOLclean and ΔαOLflapped.  The wing incidence on the fuselage (iw) is a small 

angle (of the order of 3 degrees). 
 
The horizontal tail lift coefficient is defined in Eq. (16.32) 
 

 CLh
CL

h

  iw

b c

1@


fffffffffff g

 ih@ iw

b c

@OLh

H

J

I

K                 (16.32) 

where 
 
 CL

h

 = horizontal tail lift curve slope, from Eq. (12.6).  At the end of the final 

approach, when in ground effect, his must be increased by about 10%, as 
indicated by Raymer on page 489 

 ih         = is the horizontal stabilizer incidence, which on a commercial airplane is set by 
the trim wheel on the flight deck.  A value of -100 is suggested for the landing 
approach condition. 

 


ffffffffff  = change in downwash due to alpha at horizontal stabilizer, from Fig. 16.12.  

When in ground effect this term must be reduced by one half, as indicated by 
Raymer on page 489 

 
The zero-lift angle of attack for the horizontal stabilizer (OLh

) can be defined as 

 
 OLh

OLh clean
 OLh

                   (16.3.4) 

 
where 
 
 OLh clean

= is the angle of attack for zero lift with zero elevator deflection, which is usually 

zero 
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 OLh

 = is the change in zero lift alpha for the horizontal stabilizer due to elevator 

deflection () using Eq. (16.16), and substituting  for  f  in Eq. (16.16) and 

Eq. (16.17).  This is the dominant term in the equation.  A maximum elevator 
deflection of -250 is suggested.  

 

The dashed line in Fig. 16.3.1 represents the neutral point locus, or the value of  
S h

S w

ffffffff for 

which an airplane with an aft tail has neutral longitudinal static stability.  The critical 
condition may occur at takeoff, landing approach, or cruise.  This value can be calculated 
by rearranging Raymer Eq. (16.9) into the form: 
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where 
 
 CL

  = gradient of wing lift curve, from Eq. (12.6) 

 Cm fuse
 = fuselage pitching moment derivative from Eq. (16.25).  Note that the result of 

Eq. (16.25) is per degree, and therefore must be multiplied by 180/π 
 CL

h

  = gradient of horizontal tail lift curve, from Eq. (12.6) 

 
 h


ffffffffffff  = downwash derivative at tail from Eq. (16.23), using 



ffffffffff from Fig 16.12. 

 
From the information above, the neutral point locus can be constructed.  If the airplane is 
to have a positive static margin (expressed as a percentage of the MAC), a line parallel to 
the neutral point locus can be drawn that is offset by the static margin.  Typical static 
margin is 5-10% MAC.  The foregoing analysis, along with a given allowable c.g. travel, 
permits Fig. 16.3.1 to be generated. 
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